With a little help from our (AI) friend: A general transition state sampling method for tropospheric hydrogen abstraction reactions
Viegas, L. P. and Galvão, B. R. L.; Atmos. Environ. 328, 120515 (2024)
DOI: 10.1016/j.atmosenv.2024.120515
From six to eight PI-electron bare rings of group-XIV elements and beyond: can planarity be deciphered from the "quasi-molecules" they embed?
Varandas, A. J. C.; Phys. Chem. Chem. Phys. 24, 8488 (2022)
DOI: 10.1039/d1cp04130d
Canonical and explicitly-correlated coupled cluster correlation energies of sub-kJ mol(-1) accuracy via cost-effective hybrid-post-CBS extrapolation
Varandas, A. J. C.; Phys. Chem. Chem. Phys. 23, 9571 (2021)
DOI: 10.1039/d1cp04130d
A general code for fitting global potential energy surfaces via CHIPR method: Direct-Fit Diatomic and tetratomic molecules
Rocha, C. M. R. and Varandas, A. J. C.; Comput. Phys. Commun. 258, 107556 (2021)
DOI: 10.1016/j.cpc.2020.107556
Simplified Protocol for the Calculation of Multiconformer Transition State Theory Rate Constants Applied to Tropospheric OH-Initiated Oxidation Reactions
Viegas, L. P.; J. Phys. Chem. A 125, 4499 (2021)
DOI: 10.1021/acs.jpca.1c00683
Spin-forbidden heavy-atom tunneling in the ring-closure of triplet cyclopentane-1,3-diyl
Viegas, L. P.; Nunes, C. M. and Fausto, R.; Phys. Chem. Chem. Phys. 23, 5797 (2021)
DOI: 10.1039/d1cp00076d
A general code for fitting global potential energy surfaces via CHIPR method: Triatomic molecules
Rocha, C. M. R. and Varandas, A. J. C.; Comput. Phys. Commun. 247, 106913 (2020)
DOI: 10.1016/j.cpc.2019.106913
What Electronic Structure Method Can Be Used in the Global Optimization of Nanoclusters?
Galvao, B. R. L. and Viegas, L. P.; J. Phys. Chem. A 123, 10454 (2019)
DOI: 10.1021/acs.jpca.9b09309
Multiple conical intersections in small linear parameter Jahn-Teller systems: the DMBE potential energy surface of ground-state C3 revisited
Rocha, C. M. R. and Varandas, A. J. C.; Phys. Chem. Chem. Phys. 20, 10319 (2018)
DOI: 10.1039/c7cp06656b
Extrapolation of Hartree-Fock and multiconfiguration self-consistent-field energies to the complete basis set limit
Pansini, F. N. N.; Neto, A. C. and Varandas, A. J. C.; Theor. Chem. Acc. 135, 261 (2016)
DOI: 10.1007/s00214-016-2016-4
Modeling cusps in adiabatic potential energy surfaces using a generalized Jahn-Teller coordinate
Galvao, B. R. L.; Mota, V. C. and Varandas, A. J. C.; Chem. Phys. Lett. 660, 55 (2016)
DOI: 10.1016/j.cplett.2016.07.029
Role of (H2O)(n) (n=2-3) Clusters on the HO2 + O-3 Reaction: A Theoretical Study
Viegas, L. P. and Varandas, A. J. C.; J. Phys. Chem. B 120, 1560 (2016)
DOI: 10.1021/acs.jpcb.5b07691
On the performance of various hierarchized bases in extrapolating the correlation energy to the complete basis set limit
Pansini, F. N. N.; Neto, A. C. and Varandas, A. J. C.; Chem. Phys. Lett. 641, 90 (2015)
DOI: 10.1016/j.cplett.2015.10.064
Implications of the O+OH reaction in hydroxyl nightglow modeling
Caridade, P. J. S. B; Horta, J. Z. J. and Varandas, A. J. C.; Atmos. Chem. Phys. 13, 1 (2013)
DOI: 10.5194/acp-13-1-2013
Refining to near spectroscopic accuracy the double many-body expansion potential energy surface for ground-state NH2
Rodrigues, S. P. J.; Fontes, A. C. G.; Li, Y. Q.; Varandas A. J. C.; Chem. Phys. Lett. 516, 17 (2011).
DOI: 10.1016/j.cplett.2011.09.050
The Jahn-Teller effect in the triply-degenerate electronic state of methane radical cation
Mondal, T.; Varandas, A. J. C.; J. Chem. Phys. 135, 174304 (2011).
DOI: 10.1063/1.3658641
Ab Initio Based Double-Sheeted DMBE Potential Energy Surface for N3(2A″) and Exploratory Dynamics Calculations
Galvão, B. L. R.; Varandas, A. J. C.; J. Phys. Chem. A 44, 12390 (2011).
DOI: 10.1021/jp2073396
On the role of dynamical barriers in barrierless-reactions at low energies: S(1D) + H2
Lara M.; Jambrina, P. G.; Varandas, A. J. C.; Launay, J.-M.; Aoiz, F. J.; J. Chem. Phys. 135, 134313 (2011).
DOI: 10.1063/1.3644337
Anatomy of the S((1)D)+H(2) reaction: the dynamics on two new potential energy surfaces from quantum dynamics calculations
Hankel M.; Smith S. C.; Varandas A. J. C.; Phys. Chem. Chem. Phys. 13, 13645 (2011).
DOI: 10.1039/c1cp20127a
Generalized Born-Oppenheimer treatment of Jahn-Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potential
Varandas A. J. C.; Sarkar B.; Phys. Chem. Chem. Phys. 13, 8131 (2011).
DOI: 10.1039/c0cp02598d
How Well Can Kohn-Sham DFT Describe the HO(2) + O(3) Reaction?
Viegas L. P.; Branco, A.; Varandas, A. J. C.; J. Chem. Theory and Comput. 6, 2751 (2010).
DOI: 10.1021/ct100364x
Geometrical phase effect in Jahn-Teller systems: Twofold electronic degeneracies and beyond
Varandas A. J. C.; Chem. Phys. Lett. 487, 139 (2010).
DOI: 10.1016/j.cplett.2010.01.032
HN2((2)A ') electronic manifold. II. Ab initio based double-sheeted DMBE potential energy surface via a global diabatization angle
Mota V. C.; Varandas A. J. C.; J. Phys. Chem. A 112, 3768 (2008)
DOI: 10.1021/jp710610d
Potential Energy Surface for Ground-State H(2)S via Scaling of the External Correlation, Comparison with Extrapolation to Complete Basis Set Limit, and Use in Reaction Dynamics
Song Y. Z.; Caridade, P. J. S. B. Caridade; Varandas; A. J. C., J. Phys. Chem. A 113, 9213 (2009).
DOI: 10.1021/jp903790h
Dynamics of X+CH4 (X=H,O,Cl) reactions. How reliable is transition state theory for fine tuning potential energy surfaces?
Varandas, A. J. C.; Caridade, P. J. S. B.; Zhang, J. Z. H.; Cui, Q.; Han K. H.; J. Chem. Phys. 125, 064312 (2006).
DOI: 10.1063/1.2217953